143 research outputs found

    MLPH Genotype—Melanin Phenotype Correlation in Dilute Dogs

    Get PDF
    Coat color dilution in dogs is a specific pigmentation phenotype caused by a defective transport of melanosomes leading to large clumps of pigment. It is inherited as a Mendelian autosomal recessive trait and may be accompanied by hair loss, the so-called color dilution alopecia (CDA), or black hair follicular dysplasia (BHFD). We previously identified the noncoding c.-22G>A transition in the melanophilin gene (MLPH) as a candidate causative mutation for the dilute phenotype. We have now extended our study and genotyped 935 dogs from 20 breeds segregating for dilute coat color. The dilute-associated A allele segregates in many different breeds suggesting an old mutation event. We also investigated skin biopsies of dogs suspected of having either CDA or BHFD, and our data clearly indicate that the dilute mutation is required but not sufficient to develop clinical signs of the disease. The risk to develop CDA/BHFD seems to be breed specific. Interestingly, 22 out of 29 dogs with clinical signs of CDA/BHFD have clumped melanin in the epidermis, the follicular epithelium, and the hair shafts, whereas in dilute dogs without clinical disease, clumped melanin is only found in the follicular epithelium and the hair shafts but not in the epidermi

    Transport and Noise Properties of sub-100-nm Planar Nb Josephson Junctions with Metallic Hf-Ti Barriers for nano-SQUID Applications

    Get PDF
    We analyze electric transport and noise properties at 4.2 K of self-shunted superconductor-normal metal-superconductor (SNS) sandwich-type Josephson junctions, comprising Nb as the superconductor and Hf-Ti as the normal conducting material, with lateral dimensions down to approximately 80 nm. The junctions are fabricated with an optimized multilayer Nb technology based on nanopatterning by electron-beam lithography and chemical-mechanical polishing. The dependence of transport properties on the junction geometry (lateral size and barrier thickness d(Hf-Ti)) is studied, yielding a characteristic voltage V-c up to approximately 100 mu V for the smallest d(Hf-Ti) = 17 nm. The observed small hysteresis in the current-voltage curves of devices with high V-c and large size can be attributed to self-heating of the junctions and fitted with an extended version of the resistively shunted junction model. Measurements of voltage noise of single junctions are consistent with the model including self-heating effects. The potential of our technology for further miniaturization of nanoscale superconducting quantum interference devices and for the improvement of their performance is discussed

    Enhanced gas-liquid mass transfer of an oscillatory constricted-tubular reactor

    Get PDF
    The mass transfer performance has been tested for gas-liquid flow in a new tubular reactor system, the oscillating mesotube (OMT), which features the oscillatory movement of fluid across a series of smooth constrictions located periodically along the vertical 4.4 mm internal diameter tube. The effect of the fluid oscillations (frequency,f, and center-to-peak amplitude, x(0), in the range of 0-20 s(-1) and 0-3 mm, respectively) on the overall volumetric mass transfer coefficient (k(L)a) has been tested by measuring the oxygen saturation levels with a fiber-optical microprobe (oxygen micro-optrode), and a mathematical model has been produced to describe the oxygen mass transport in the OMT. The oxygen mass transfer rates were about I order of magnitude higher (k(L)a values up to 0.16 s(-1)) than those values reported for gas-liquid contacting in a 50 mm internal diameter oscillatory flow reactor (OFR), for the same peak fluid oscillatory velocity, i.e., 2 pi fx(0). This represents remarkable oxygen transfer efficiencies, especially when considering the very low mean superficial gas velocity involved in this work (0.37 mm s(-1)). The narrower constrictions helped to increase the gas fraction (holdup) by reducing the rise velocity of the bubbles. However, the extent of radial mixing and the detachment of vortex rings from the surface of the periodic constrictions are actually the main causes of bubbles retention and effective gas-liquid contacting and are, thus, responsible for the enhancement of k(L)a in the OMT.N.R. thanks the Portuguese Foundation for Science and Technology (FCT) for financial support of his work (SFRH/BD/6954/2001)

    Boundary Limitation of Wavenumbers in Taylor-Vortex Flow

    Full text link
    We report experimental results for a boundary-mediated wavenumber-adjustment mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow (TVF). The system consists of fluid contained between two concentric cylinders with the inner one rotating at an angular frequency Ω\Omega. As observed previously, the Eckhaus instability (a bulk instability) is observed and limits the stable wavenumber band when the system is terminated axially by two rigid, non-rotating plates. The band width is then of order ϵ1/2\epsilon^{1/2} at small ϵ\epsilon (ϵΩ/Ωc1\epsilon \equiv \Omega/\Omega_c - 1) and agrees well with calculations based on the equations of motion over a wide ϵ\epsilon-range. When the cylinder axis is vertical and the upper liquid surface is free (i.e. an air-liquid interface), vortices can be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The band of wavenumbers over which Taylor-vortex flow exists is then more narrow than the stable band limited by the Eckhaus instability. At small ϵ\epsilon the boundary-mediated band-width is linear in ϵ\epsilon. These results are qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Positronium laser cooling via the 13S1^3S-23P2^3P transition with a broadband laser pulse

    Full text link
    We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the 13S1^3S-23P2^3P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived 33P3^3P states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.Comment: 6 pages, 5 figure

    Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells

    Get PDF
    Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells
    corecore